官方網(wǎng)站:http://www.journals.elsevier.com/chaos-solitons-and-fractals/
投稿網(wǎng)址:http://ees.elsevier.com/chaos/default.asp?acw=3a54-12
Chaos, Solitons & Fractals has an open access mirror journal Chaos, Solitons & Fractals: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.Chaos, Solitons & Fractals aims to be a leading journal in the interdisciplinary field of Nonlinear Science. It encourages the submission of articles concerning the fundamentals of the following subjects: dynamics; non-equilibrium processes in physics; complex matter and networks; computational biology; fluctuations and random processes; self-organization; social phenomena; technology.The journal can only accept papers whose primary subject area lies within the above Aims & Scope. In particular, please take notice of the following:In order to be acceptable, manuscripts of more mathematical nature should at least attempt a connection to physical insight or new qualitative features. The word "Solitons" should be understood as a label especially extended to all nonlinear integrable systems in complex natural phenomena. The paper should not bear on some explicit formulae, some standard solutions, constructions, or asymptotic methods.The journal is interested in articles providing strong insights in the mathematical theory of fractals that play an important role either in understanding the general theory or are profound for an important particular application, especially in complex systems. Numerical computations should only assist the developed results. Also welcome are the discovery of new fractals that are crucial for important applications.The subject listing is specified further in the journal's classification list. Authors are required to specify matching classifications upon submission of their work.Authors are encouraged to link to their data posted in a repository or uploaded to Mendeley Data.Authors can submit separate research elements describing their data to Data in Brief and software to Software X.
混沌,孤獨與分形有一個開放的鏡像期刊混沌,孤獨與分形:X,共享相同的目標(biāo)和范圍,編輯團(tuán)隊,提交系統(tǒng)和嚴(yán)格的同行審查?!痘煦?,孤子與分形》雜志旨在成為非線性科學(xué)跨學(xué)科領(lǐng)域的領(lǐng)先期刊。它鼓勵提交關(guān)于下列主題基本原理的文章:動力學(xué);物理學(xué)中的非平衡過程;復(fù)雜物質(zhì)和網(wǎng)絡(luò);計算生物學(xué);波動和隨機(jī)過程;自組織;社會現(xiàn)象;技術(shù)。本刊只接受主要學(xué)科范圍在上述目標(biāo)范圍內(nèi)的論文。特別請注意以下事項:為了被接受,更多數(shù)學(xué)性質(zhì)的手稿至少應(yīng)該嘗試與物理洞察力或新的定性特征相聯(lián)系。“孤子”一詞應(yīng)被理解為一個標(biāo)簽,特別適用于復(fù)雜自然現(xiàn)象中的所有非線性可積系統(tǒng)。這篇論文不應(yīng)該包含一些顯式公式、一些標(biāo)準(zhǔn)解、結(jié)構(gòu)或漸近方法。該雜志感興趣的文章提供了對分形數(shù)學(xué)理論的深刻見解,無論是在理解一般理論中發(fā)揮重要作用,或?qū)σ粋€重要的特殊應(yīng)用,特別是在復(fù)雜的系統(tǒng)中是深刻的。數(shù)值計算只應(yīng)有助于發(fā)展的結(jié)果。同樣受歡迎的是發(fā)現(xiàn)了新的分形,這些分形對于重要的應(yīng)用是至關(guān)重要的。主題列表在期刊的分類列表中進(jìn)一步指定。作者被要求在提交作品時指定匹配的分類。我們鼓勵作者鏈接到存儲庫中發(fā)布的數(shù)據(jù)或上傳到Mendeley data的數(shù)據(jù)。作者可以提交單獨的研究元素,簡要地描述他們的數(shù)據(jù)到數(shù)據(jù),軟件到軟件X。
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
數(shù)學(xué) | 2區(qū) | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學(xué)跨學(xué)科應(yīng)用 PHYSICS, MATHEMATICAL 物理:數(shù)學(xué)物理 PHYSICS, MULTIDISCIPLINARY 物理:綜合 | 1區(qū) 1區(qū) 2區(qū) | 是 | 否 |
JCR分區(qū)等級 | JCR所屬學(xué)科 | 分區(qū) | 影響因子 |
Q1 | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | Q1 | 9.922 |
PHYSICS, MATHEMATICAL | Q1 | ||
PHYSICS, MULTIDISCIPLINARY | Q1 |
精選同類領(lǐng)域期刊,熱門推薦輕松get~
精選常見問題,答疑解惑輕松get~