官方網(wǎng)站:http://www.hindawi.com/journals/ddns/
投稿網(wǎng)址:http://mts.hindawi.com/login/
The main objective of Discrete Dynamics in Nature and Society (DDNS) is to foster links between basic and applied research relating to discrete dynamics of complex systems encountered in the natural and social sciences. Discrete dynamics reflects a new emerging tendency towards utilization of iterative mathematical models systems of difference equations to describe the behavior of complex systems. It has became clear from the latest development in discrete modeling that such models have a simpler structure and provide many more possibilities for generating and describing complex non-linear phenomena, including chaotic regimes and fractals. However, further developments in such a discrete mathematical approach are restricted by the absence of general principles that could play the same role as the variational principles in physics. DDNS aims to elaborate such a principles, which are expected to lead to a better understanding of the exact meaning of ?discrete? time and space, and, to the creation of a new calculus for discrete complex dynamics. This general principles should provide direct construction of difference equations for their further use in mathematical modeling of complex, living and thinking systems as it was happened in classical mechanics for the inert matter. The journal intend to stimulate publications directed to the analyses of computer generated solutions and chaotic in particular, correctness of numerical procedures, chaos synchronization and control, discrete optimization methods among other related topics. The journal will provide a channel of communication between scientists and practitioners working in the field of complex systems analysis and will stimulate the development and use of discrete dynamical approach.
自然與社會離散動力學(xué)(DDNS)的主要目標(biāo)是促進(jìn)與自然和社會科學(xué)中遇到的復(fù)雜系統(tǒng)離散動力學(xué)相關(guān)的基礎(chǔ)研究和應(yīng)用研究之間的聯(lián)系。離散動力學(xué)反映了利用差分方程系統(tǒng)的迭代數(shù)學(xué)模型來描述復(fù)雜系統(tǒng)行為的新趨勢。從離散建模的最新發(fā)展可以明顯看出,這種模型具有更簡單的結(jié)構(gòu),并為生成和描述復(fù)雜的非線性現(xiàn)象(包括混沌狀態(tài)和分形)提供了更多的可能性。然而,這種離散數(shù)學(xué)方法的進(jìn)一步發(fā)展受到缺乏一般原理的限制,這些一般原理可以在物理學(xué)中發(fā)揮與變分原理相同的作用。DDNS的目的是闡述這樣一個原則,這將有助于更好地理解“離散”的確切含義。時間和空間,并創(chuàng)造了一個新的微積分離散復(fù)雜動力學(xué)。這一一般原則應(yīng)該為差分方程的進(jìn)一步應(yīng)用提供直接的構(gòu)造,就像在惰性物質(zhì)的經(jīng)典力學(xué)中所發(fā)生的那樣,差分方程可以進(jìn)一步用于復(fù)雜、生活和思維系統(tǒng)的數(shù)學(xué)建模。該雜志旨在刺激專門針對計(jì)算機(jī)生成的解決方案和混沌分析的出版物,特別是正確的數(shù)值程序,混沌同步和控制,離散優(yōu)化方法等相關(guān)主題。該雜志將為從事復(fù)雜系統(tǒng)分析領(lǐng)域的科學(xué)家和實(shí)踐者提供交流渠道,并將促進(jìn)離散動力方法的發(fā)展和使用。
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
數(shù)學(xué) | 4區(qū) | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 數(shù)學(xué)跨學(xué)科應(yīng)用 MULTIDISCIPLINARY SCIENCES 綜合性期刊 | 4區(qū) 4區(qū) | 否 | 否 |
JCR分區(qū)等級 | JCR所屬學(xué)科 | 分區(qū) | 影響因子 |
Q3 | MULTIDISCIPLINARY SCIENCES | Q3 | 1.457 |
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | Q3 |
精選同類領(lǐng)域期刊,熱門推薦輕松get~
精選常見問題,答疑解惑輕松get~