官方網(wǎng)站:http://www.ietdl.org/IET-SPR
投稿網(wǎng)址:http://mc.manuscriptcentral.com/iet-spr
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.Topics covered by scope include, but are not limited to:advances in single and multi-dimensional filter design and implementationlinear and nonlinear, fixed and adaptive digital filters and multirate filter banksstatistical signal processing techniques and analysisclassical, parametric and higher order spectral analysissignal transformation and compression techniques, including time-frequency analysissystem modelling and adaptive identification techniquesmachine learning based approaches to signal processingBayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniquestheory and application of blind and semi-blind signal separation techniquessignal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signalsdirection-finding and beamforming techniques for audio and electromagnetic signalsanalysis techniques for biomedical signalsbaseband signal processing techniques for transmission and reception of communication signalssignal processing techniques for data hiding and audio watermarkingsparse signal processing and compressive sensing
IET信號處理發(fā)布了關(guān)于各種信號處理和機(jī)器學(xué)習(xí)主題的研究,涵蓋了檢測、估計(jì)、推理和分類問題中的各種應(yīng)用、學(xué)科、模式和技術(shù)。發(fā)表的研究包括單維和高維數(shù)據(jù)分析的算法設(shè)計(jì)、稀疏性、線性和非線性系統(tǒng)、遞歸和非遞歸數(shù)字濾波器和多速率濾波器組,以及從傳感器陣列處理、基于深度卷積神經(jīng)網(wǎng)絡(luò)的方法等一系列主題。對混沌理論的應(yīng)用,還有更多。范圍涉及的主題包括但不限于:單、多維濾波器設(shè)計(jì)與實(shí)現(xiàn)進(jìn)展線性和非線性、固定和自適應(yīng)數(shù)字濾波器和多速率濾波器組統(tǒng)計(jì)信號處理技術(shù)與分析經(jīng)典、參數(shù)和高階譜分析信號轉(zhuǎn)換和壓縮技術(shù),包括時(shí)頻分析系統(tǒng)建模與自適應(yīng)識別技術(shù)基于機(jī)器學(xué)習(xí)的信號處理方法信號處理的貝葉斯方法,包括蒙特卡羅馬爾可夫鏈和粒子濾波技術(shù)盲半盲信號分離技術(shù)的理論與應(yīng)用語音信號分析、增強(qiáng)、編碼、合成和識別的信號處理技術(shù)音頻和電磁信號的定向和波束形成技術(shù)生物醫(yī)學(xué)信號分析技術(shù)通信信號傳輸和接收的基帶信號處理技術(shù)數(shù)據(jù)隱藏和音頻水印的信號處理技術(shù)稀疏信號處理與壓縮傳感
精選同類領(lǐng)域期刊,熱門推薦輕松get~
精選常見問題,答疑解惑輕松get~