官方網(wǎng)站:http://link.springer.com/journal/10801
投稿網(wǎng)址:https://www.editorialmanager.com/jaco/default.aspx
The Journal of Algebraic Combinatorics publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems. The combinatorics might be enumerative, or involve matroids, posets, polytopes, codes, designs, or finite geometries. The algebra could be group theory, representation theory, lattice theory or commutative algebra, to mention just a few possibilities.This journal provides an ideal resource to the subject, providing a single forum for papers on algebraic combinatorics for researchers in combinatorics, and mathematical and computer scientists with a strong interest in combinatorial structure.
代數(shù)組合學雜志發(fā)表論文,其中組合學和代數(shù)互動在一個重要和有趣的方式。這種相互作用可能通過使用代數(shù)方法研究組合結(jié)構(gòu),或?qū)⒔M合方法應用于代數(shù)問題來實現(xiàn)。組合學可以是枚舉的,也可以涉及擬陣、波塞特、多邊形、代碼、設計或有限幾何。代數(shù)可以是群論,表示論,格論或者交換代數(shù),舉幾個例子。這本雜志為這門學科提供了一個理想的資源,為組合學的研究人員,以及對組合結(jié)構(gòu)有濃厚興趣的數(shù)學和計算機科學家提供了一個關(guān)于代數(shù)組合學的論文的單一論壇。
大類學科 | 分區(qū) | 小類學科 | 分區(qū) | Top期刊 | 綜述期刊 |
數(shù)學 | 3區(qū) | MATHEMATICS 數(shù)學 | 3區(qū) | 否 | 否 |
JCR分區(qū)等級 | JCR所屬學科 | 分區(qū) | 影響因子 |
Q3 | MATHEMATICS | Q3 | 0.963 |
精選同類領(lǐng)域期刊,熱門推薦輕松get~
精選常見問題,答疑解惑輕松get~