The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences
《幾何力學(xué)雜志》(JGM)旨在發(fā)表有關(guān)力學(xué)和控制理論中幾何方法(廣義上的)的研究文章,旨在促進(jìn)理論和應(yīng)用之間的相互作用。《日刊》歡迎下列主題的進(jìn)展:1. 拉格朗日力學(xué)和哈密頓力學(xué)2. 辛幾何和泊松幾何及其在力學(xué)中的應(yīng)用3.幾何與最優(yōu)控制理論4. 幾何積分和變分積分5. 隨機(jī)系統(tǒng)幾何6. 動(dòng)力學(xué)系統(tǒng)中的幾何方法7. 連續(xù)介質(zhì)力學(xué)8. 經(jīng)典場論9. 流體力學(xué)10. 無限維的動(dòng)力系統(tǒng)11. 量子力學(xué)和量子信息論12. 應(yīng)用于物理、技術(shù)、工程和生物科學(xué)
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
數(shù)學(xué) | 4區(qū) | MATHEMATICS, APPLIED 應(yīng)用數(shù)學(xué) PHYSICS, MATHEMATICAL 物理:數(shù)學(xué)物理 | 4區(qū) 4區(qū) | 否 | 否 |
JCR分區(qū)等級 | JCR所屬學(xué)科 | 分區(qū) | 影響因子 |
Q4 | PHYSICS, MATHEMATICAL | Q4 | 0.737 |
MATHEMATICS, APPLIED | Q4 |
精選同類領(lǐng)域期刊,熱門推薦輕松get~
精選常見問題,答疑解惑輕松get~